Package: mixtree (via r-universe)

March 6, 2025

Title A Statistical Framework for Comparing Sets of Trees

Version 0.0.1

Description Apply hypothesis testing methods to assess differences between sets of trees.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Imports igraph, treespace, vegan

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://cygei.github.io/mixtree/

Config/pak/sysreqs libfreetype6-dev libglpk-dev libglu1-mesa-dev make libicu-dev libjpeg-dev libpng-dev libxml2-dev libgl1-mesa-dev libssl-dev zlib1g-dev

Repository https://cygei.r-universe.dev

RemoteUrl https://github.com/cygei/mixtree

RemoteRef HEAD

RemoteSha de3662b1acb43c463bfded23d52ae88e1911b356

Contents

abouheif	2
euclidean	2
kendall	3
make_tree	4
patristic	4
shuffle_graph_ids	5
tree_test	6
validate_tree	7
	- 9

Index

abouheif

Description

The Abouheif distance is the product of the number of direct descendants of each node in the path between two nodes. It is a measure of the number of transmission events between two nodes.

Usage

abouheif(tree)

Arguments

tree

A data frame representing a transmission tree, with the first column containing the infector IDs and the second the infectee IDs.

Value

A square, symmetric matrix of Abouheif distances between nodes.

Examples

```
tree <- data.frame(from = c(1, 1, 2, 2, 3, 3), to = c(2, 3, 4, 5, 6, 7))
abouheif(tree)
```

euclidean

Calculate the Euclidean distance between two distance matrices.

Description

This function computes the Euclidean distance between the lower triangular parts of two given matrices.

Usage

euclidean(mat1, mat2)

Arguments

mat1	A numeric matrix.
mat2	A numeric matrix.

Value

A numeric value representing the Euclidean distance between the lower triangular parts of mat1 and mat2.

kendall

Examples

```
mat1 <- matrix(c(1, 2, 3, 4), 2, 2)
mat2 <- matrix(c(4, 3, 2, 1), 2, 2)
euclidean(mat1, mat2)</pre>
```

kendall

Compute the Kendall distance matrix

Description

Kendall's distance measures the depth of the most recent common infector (MRCI) for each pair of nodes with respect to the source (patient 0).

Usage

kendall(tree)

Arguments

tree A data frame representing a transmission tree, with the first column containing the infector IDs and the second the infectee IDs.

Value

A square, symmetric matrix of Kendall's distances between nodes.

References

A Metric to Compare Transmission Trees - M Kendall · 2018

See Also

findMRCIs

Examples

```
tree <- data.frame(from = c(1, 1, 2, 2, 3, 3), to = c(2, 3, 4, 5, 6, 7))
kendall(tree)
```

```
make_tree
```

Description

Creates a transmission tree with a specified number of cases and branches per case. The tree can be generated with fixed or Poisson-distributed branching factors.

Usage

make_tree(n_cases, R = 2, stochastic = FALSE, plot = FALSE)

Arguments

n_cases	Integer. The total number of cases (nodes) in the tree.
R	Integer. The fixed number of branches per case when stochastic is FALSE, or the mean of the Poisson distribution when stochastic is TRUE.
stochastic	Logical. If TRUE, the number of branches per case is sampled from a Poisson distribution with mean R. Default is FALSE.
plot	Logical. If TRUE, the function will plot the generated tree. Default is FALSE.

Value

An igraph object representing the transmission tree.

Examples

```
# Generate a deterministic transmission tree
deterministic_tree <- make_tree(n_cases = 15, R = 2, stochastic = FALSE, plot = TRUE)
# Generate a stochastic transmission tree
random_tree <- make_tree(n_cases = 15, R = 2, stochastic = TRUE, plot = TRUE)</pre>
```

	 -+	-
	 <u> </u>	
~~~	 ~ ~ -	

Compute the Patristic distance matrix

#### Description

The patristic distance is the number of generations separating any two nodes in a transmission tree.

#### Usage

patristic(tree)

#### Arguments

tree A data frame representing a transmission tree, with the first column containing the infector IDs and the second the infectee IDs.

#### Value

A square, symmetric matrix of patristic distances between nodes.

#### Examples

```
tree <- data.frame(from = c(1, 1, 2, 2, 3, 3), to = c(2, 3, 4, 5, 6, 7)) patristic(tree)
```

shuffle_graph_ids Shuffle Node IDs in a Graph

#### Description

Randomly shuffles the IDs of the nodes in a given graph and optionally plots the shuffled graph.

#### Usage

shuffle_graph_ids(g, plot = FALSE)

#### Arguments

g	An igraph object representing the graph.
plot	Logical. If TRUE, the function will plot the shuffled graph. Default is FALSE

#### Value

An igraph object with shuffled node IDs.

#### Examples

```
# Create an example graph
g <- make_tree(n_cases = 10, R = 2)
# Shuffle the node IDs
shuffled_graph <- shuffle_graph_ids(g, plot = TRUE)</pre>
```

```
tree_test
```

#### Description

Performs a statistical test to assess whether there are significant differences between sets of transmission trees. Supports PERMANOVA (via "vegan::adonis2"), Chi-Square, or Fisher's Exact Test.

#### Usage

```
tree_test(
    ...,
    method = c("permanova", "chisq", "fisher"),
    within_dist = patristic,
    between_dist = euclidean,
    test_args = list()
)
```

#### Arguments

	Two or more sets of transmission trees. Each set must be a list of data frames with columns from (infector) and to (infectee).
method	A character string specifying the test method. Options are "permanova", #' "chisq", or "fisher". Default is "permanova".
within_dist	A function to compute pairwise distances within a tree for PERMANOVA. Takes a data frame, returns a square matrix. Default is patristic.
between_dist	A function to compute distance between two trees for PERMANOVA. Takes two matrices, returns a numeric value. Default is euclidean.
test_args	A list of additional arguments to pass to the underlying test function (vegan::adonis2, stats::chisq.test, or stats::fisher.test). Default is an empty list.

#### Details

This function compares sets of transmission trees using one of three statistical tests.

**PERMANOVA**: Evaluates whether the topological distribution of transmission trees differs between sets.

- Null Hypothesis (H0): Transmission trees in all sets are drawn from the same distribution, implying similar topologies.
- Alternative Hypothesis (H1): At least one set of transmission trees comes from a different distribution.

**Chi-Square or Fisher's Exact Test**: Evaluates whether the distribution of infector-infectee pairs differs between sets.

- Null Hypothesis (H0): The frequency of infector-infectee pairs is consistent across all sets.
- Alternative Hypothesis (H1): The frequency of infector-infectee pairs differs between at least two sets.

#### Value

- For "permanova": A "vegan::adonis2" object containing the test results.
- For "chisq" or "fisher": An "htest" object with the test results.

#### Examples

```
set.seed(1)
# Generate example sets
setA <- replicate(10, igraph::as_long_data_frame(
    make_tree(n_cases = 10, R = 2, stochastic = TRUE)
), simplify = FALSE)
setB <- replicate(10, igraph::as_long_data_frame(
    make_tree(n_cases = 10, R = 2, stochastic = TRUE)
), simplify = FALSE)
setC <- replicate(10, igraph::as_long_data_frame(
    make_tree(n_cases = 10, R = 4, stochastic = TRUE)
), simplify = FALSE)
# PERMANOVA test
tree_test(setA, setB, setC, method = "permanova")
# Chi-Square test
tree_test(setA, setB, setC, method = "chisq")</pre>
```

validate_tree Validate a Transmission Tree

#### Description

Checks if a transmission tree meets specific topology criteria for our test. The tree must be a directed acyclic graph (DAG), weakly connected, and have at most one infector per node.

#### Usage

```
validate_tree(tree)
```

## Arguments tree

A data frame with columns from and to representing the transmission tree.

#### Value

Invisible TRUE if the tree is valid. Throws an error if invalid.

### Examples

```
good_tree <- data.frame(from = c(1, 2, 3), to = c(2, 3, 4))
validate_tree(good_tree)
bad_tree <- data.frame(from = c(1, 2, 3), to = c(2, 3, 2))
try(validate_tree(bad_tree))</pre>
```

# Index

abouheif, 2
euclidean, 2, 6
findMRCIs, 3
kendall, 3
make_tree, 4
patristic, 4, 6
shuffle_graph_ids, 5
tree_test, 6
validate_tree, 7